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The goal of this experiment is to try different approaches to recognize a series of handwritten digits
and decide which is the most accurate one. The tests range from simple probability distributions
to state-of-the-art methods such as CNNs. To accomplish this task, the MNIST dataset (and some
of its variants) are used as the data source. This dataset, that consists of binary images of digits, is
well-known in the Al community for being the standard for testing any image recognition system.

I. GETTING STARTED

Image recognition is the ability of computer systems to
identify and extract different kinds of information from
images. This technologies are used to perform many vi-
sual tasks, such as labeling the content of images, guiding
autonomous robots, or creating self-driving cars.

In this case, the goal is to classify handwritten digits,
labelling them appropriately according to the digit that
they represent. From all the different approaches that
can be taken to solve the problem efficiently, here we
focus in a few of them:

e Training and tuning Convolutional Neural Net-
works (CNN) to classify the data

e Using a prediction-based model with the Zero-shot
learning (ZSL) technique

e Testing several Nearest Neighbor (k-NN) classifiers,
that group the data using a similarity measure

e Checking whether the data adjusts properly to several
probability distributions

All of the previously mentioned approaches were eval-
uated, and the results are presented in the next sections.

II. THE DATASET

The chosen dataset for this project has been the
MNIST (Modified National Institute of Standards and
Technology) [1] database of evenly distributed handwrit-
ten digits from 0 to 9. It is a standard dataset used
in computer vision and deep learning, that consists of a
training set of 60,000 samples, and a test set of 10,000
samples.

The digits have been centered in a fixed-size image and
size-normalized, as it can be seen in Fig. 1. The pixel
values for each image in the dataset are unsigned integers
in the range between black and white, or 0 and 255.

Although this dataset is effectively solved, it can be
used as the basis for developing, evaluating, and using
several learning approaches for image classification. This
includes estimating the performance of some models, and
how to explore possible improvements.
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There also exist several variants of this dataset with
different types of data, such as Fashion-MNIST (with
pictures of clothing), or C-MNIST (the original dataset
adding randomly 10 different colors into their back-
grounds and foregrounds).
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FIG. 1. Sample digits extracted from the MNIST dataset

III. CONVOLUTIONAL NEURAL NETWORKS

The first evaluated approach was using Convolutional
Neural Networks. A CNN is a Deep Learning algorithm
that assigns importance (learnable weights and biases) to
various aspects of the input samples and is able to differ-
entiate them among each other. The pre-processing re-
quired using this approach is much lower when compared
to other classification algorithms, and the architecture is
analogous to that of the connectivity pattern of neurons
in the human brain.

In this case, a base model was created, and then several
tweaks were tested to check whether the performance of
the classifier improved.

A. Evaluation

For evaluating each model, k-fold cross-validation [2]
was used, with k& = 5. The value of k was chosen to
provide a baseline for both repeated evaluation and to
optimize the running time. FEach test set consisted of
20% of the training dataset (= 12,000 samples), close to
the actual test set size. The training dataset was shuf-
fled prior to being split, and the shuffling was performed
each time, so that any evaluated model had the same
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train and test datasets in each fold, making evaluation
as accurate as possible. The baseline model was trained
for 10 epochs with a default batch size of 32 examples.
The test set for each fold was used to evaluate the model
both during each epoch of the training run, to facilitate
creating learning curves, and at the end of the run, so
that the performance can be estimated.

Data about the resulting history from each run, as well
as the classification accuracy of the fold was recorded.
The classification accuracy scores collected during each
fold can be summarized by calculating the mean and
standard deviation. This provides an estimate of the av-
erage expected performance of the model trained on this
dataset, with an estimate of the average variance in the
mean.

B. Initial model

First of all, the pixel values of grayscale images were
normalized (i.e. rescaled them to the range [0,1]). Then,
the two main aspects of the model were defined: (i) the
feature extraction front end, comprised of convolutional
and pooling layers; and (ii) the classifier backend, that
will make a prediction.

For the convolutional front-end, a single convolutional
layer with a small filter size (3,3) and number of filters
(32) followed by a max pooling layer was used.

Given that the problem is a multi-class classification
task, it required an output layer with 10 nodes in order
to predict the probability distribution of an image be-
longing to each class. Therefore, it was decided to use a
softmax activation function [3]. Between the feature ex-
tractor and the output layer, a dense layer with 100 nodes
to interpret the features was added. All layers used the
ReL U activation function [4] and the He weight initial-
ization scheme [5], both recommended best practices.

The configuration for the stochastic gradient descent
optimizer featured a learning rate of 0.01 and a momen-
tum of 0.9. Finally, the categorical cross-entropy loss
function, suitable for multi-class classification, was opti-
mized.

After training this model taking into account the previ-
ously described parameters, all cases reached more than
98% accuracy, which can be considered a very positive
result.

In this case, it can be seen in Fig. 2 that the model
generally achieves a good fit, with train and test learning
curves converging. There is no clear sign of over/under-
fitting.

Next, a summary of the model performance was cal-
culated. In this case the model had an estimated skill of
about 98.657% and a standard deviation of 0.133, which
is acceptable. The distribution of accuracy scores can be
observed in Fig. 3.
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FIG. 2. Diagnostic plot of the initial CNN model, showing
model performance on the train and test set during each fold
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FIG. 3. Box and whisker plot summarizing the distribution
of accuracy scores of the initial CNN model

C. Model optimization

Once the initial model was designed and its results
were evaluated, several aspects of the learning algorithm
were explored to look for potential improvements.

The first tested approach, that could accelerate the
learning and improve the model performance, was batch
normalization [6], a method used to make artificial neu-
ral networks faster and more stable through normaliza-
tion of the layers’ inputs by re-centering and re-scaling
(i.e. standardizing the output). After implementing it
into the initial model, a similar model performance is ob-
served when comparing the results to the baseline. In this
case, the speed of learning (improvement over epochs)
does not appear to be different from the baseline model.
The results suggest that this approach does not offer any
benefit in this case.

As a second approach, the model configuration was
modified by increasing the depth of the feature ex-
tractor part, following a VGG-like pattern of adding
more convolutional and pooling layers with the same
sized filter, while increasing the number of filters. In



TABLE I. CNN experiment results

Model Mean Std. deviation
Initial 98.657 0.133
Batch normalization |98.707 0.082
Depth increasing 98.845 0.151

this case, a double convolutional layer was added with
64 filters each, followed by another max pooling layer.
Now, results show some improvement over the baseline,
while keeping a good fit on the problem with no clear
signs of overfitting. The estimated performance shows a
small improvement, with a higher accuracy on average.

D. Results

The results for the three tested models are shown in
Table I. Finally, the performance of the depth-increased
model was evaluated against the test dataset to deter-
mine how well it performs in practice. It was observed
that the model achieved an accuracy of 99.310%.

Several additional approaches can be tested that could
potentially improve the model. However, the current
results are already promising and show that this Deep
Learning technique is very suitable for recognizing the
considered dataset.

IV. ZERO-SHOT LEARNING

The second approach that was taken into account was
Zero-shot learning. ZSL [7] is a problem setup in ma-
chine learning where, at test time, a learner observes
samples from classes that were not observed during train-
ing, and needs to predict the class they belong to. These
methods generally work by associating observed and non-
observed classes through some form of auxiliary informa-
tion, which encodes distinguishing properties of objects,
as it can be seen in Fig. 4.

ZSL overcomes the problem of classical approaches of
needing to add new classes and retrain the model if it
has to recognize additional types of data. In this case,
the objective is to recognize some digits that were not
included in the training dataset.

A. Model description

The chosen approach for this experiment consisted of 2
layers and was built upon creating relationships between
features, attributes and classes with the help of a linear
model.

1. The first layer defines the relationship between fea-
tures and attributes using the weights in that layer.
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FIG. 4. Example of ZSL classification procedure using ani-
mals

2. The second layer deals with modelling the relation-
ship between attributes and classes where the pre-
scribed attribute signatures is fixed.

In the model, z classes were chosen for training, and
each of them had a signature composed of a attributes.
The signatures were represented in a boolean signature
matrix S.

This helped in defining the soft link between attributes
and classes. The samples available during training are
denoted by X € R(@*™) where d is the dimensionality of
data and m is the number of samples.

Ground truth labels for each training instance be-
longing to one of the z classes are denoted by Y €
{—1,1}(m*2) Now, ground truths for each sample could
be obtained from Y and S.

If a linear predictor in a classical approach was used,
then it would be required to optimize the loss function
for output Y and dot product of transpose of X and W,
where W contains the parameters to be learned.

At the inference stage the objective was to distin-
guish between a new set of 2’ classes. To do so, the avail-
able information was their attributes signatures, S’ €
[O, 1](a><z')_

When designing a model, it is desired that the Eu-
clidean norm of the representation of any (training) at-
tribute signature, s € [0,1]*, must be controlled so that
ideally the representation of all signatures on the feature
space have a similar Euclidean norm. This allows fair
comparisons between signatures, and prevents problems
that stem from highly unbalanced training sets.

Then, given a new instance, x, the prediction is given
by argmaz(transpose(X) -V - Si") where V is given by
W =V -transpose(S),V € R(@xa),

B. Training the model

To apply the previous procedure to the dataset under
study, first Label Encoder was used to encode target dig-
its into values between 0 and (C — 1), where C is the
total number of classes. Then, only z digits were chosen
for training, in this case those were {0,1,2,7,8,9}.



TABLE II. ZSL experiment results

Logistic Regression model Training |Inference
accuracy |accuracy

L2 reg. - Solver: saga 72.423 46.537

L2 reg. - Solver: Ilbfgs 63.925 48.061

Elastic-net reg. - Solver: saga 72.056 46.814

After encoding the target values, the weight matrix
was created using logistic regression and attributes were
created with unsupervised learning.

The signature matrix was built with 2 components of
each Principal Component Analysis (PCA) and Locally
Linear Embedding (LLE).

PCA is a technique for feature extraction that com-
bines input variables in such a way that the least impor-
tant variables are ignored while keeping the important
information. This method also avoids overfitting.

LLE is a lower-dimensional projection of the data
which preserves distances within local neighborhoods. It
can be thought of as a series of local PCA which are glob-
ally compared to find the best non-linear embedding.

Finally, new weight matrix was calculated from this
signature matrix S and matrix V. From this, new pre-
dictions can be made about the unseen digits.

C. Results

After testing several Logistic Regression models that
could potentially fit the training sample data, the results
shown in Table II were obtained, reaching a training ac-
curacy of up to 72.5% in the training phase and of 48.06%
in the inference phase.

Although these results might not seem remarkable
when compared to the previous CNN approach (section
III), they almost twice as good as a random prediction
for unseen digits in the best case (with a 25% of accuracy
considering 4 unseen digits), proving the efficiency of this
predictive approach.

However, this experiment should only be considered
as a reference to be used in datasets with a potentially
increasing number of classes, as the MNIST dataset has
a very well defined amount of classes that could be easily
considered in training time.

V. K-NEAREST NEIGHBORS

The next approach to be tested was a simpler one than
those of the previous experiments, and was based on
the k-Nearest Neighbors algorithm. k-NN [8] is a non-
parametric classification method used for classification
and regression. The input consists of the k closest train-
ing examples in a data set. In classification, the output
is a class membership. An object is classified to the most
common class among its k nearest neighbors, as in Fig.
5 (k is a positive integer, typically small).

The neighbors are taken from a set of objects for which
the class is known: this can be thought of as the train-
ing set for an algorithm of supervised learning. k-NN is
sensitive to the local structure of the data.
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FIG. 5. k-NN classification example: with k = 3, the sample
* would be classified into ; with k& = 6, it would be

classified into class A

A. Experiment description

In this case, the experimentation phase consisted of
dividing the dataset into a training set, composed of a
random set of 90% of the sample data; and a testing set,
composed of the remaining 10%.

Then, using the PCA dimensionality reduction tech-
nique (defined in section IV B), the training dataset was
reduced from 784 (28x28 represented as a 1D vector)
dimensions to different values of d dimensions, and its
training accuracy was measured using a k-NN classifier
with different values of k and the Euclidean (L2) distance.

Finally, in the evaluation phase the d value that
achieved the best accuracy (i.e. the one that kept most
of the important information while removing noisy data),
together with the best k value, were chosen and then eval-
uated against the whole MNIST dataset.

B. Results

The values of accuracy obtained in the experimentation
phase after reducing the data to different dimensions and
comparing with various amounts of neighbors are sum-
marized in Table III. As it can be observed, the best
result was to reduce the data to 100 dimensions and to
use a 1-NN classifier (i.e. the nearest neighbor).

In the testing phase with the whole MNIST dataset,
the obtained accuracy was of 97.16%.

This result is still not as good as the initial CNN ap-
proach (section III). However, the simplicity of training
this model compared with CNNs, and considering that



TABLE III. k-NN experiment, training results

Dimensions (d) Neighbors (k) |Accuracy (%)
5 1 69.517
20 1 96.900
100 1 97.600
200 1 97.250
5 3 72.133
20 3 97.017
100 3 97.517
200 3 97.317
5 5 73.750
20 5 96.983
100 5 97.300
200 5 97.066

the difference is of only 2.15% in accuracy, makes this
approach interesting to explore.

Potential optimizations could be to explore different
distance measures (such as L1, L3 or Mahalanobis dis-
tance [9], among others) or using Wilson’s editing algo-
rithm [10] to preprocess the data, removing noisy sam-
ples.

VI. PROBABILITY DISTRIBUTIONS

The final approach to be tested was to assume that the
data followed different probability distributions, and to
try estimating its parameters. More precisely, the tested
distributions were multidimensional Bernoulli, Multino-
mial, and Gaussian.

Some smoothing techniques were applied on the data
to avoid overfitting and, because each of these probability
distributions are suitable for different kinds of data, it
was required to preprocess the samples in some cases.

For each of the following experiments, in the experi-
mentation phase the dataset was again divided into a
training set, composed of a random set of 90% of the sam-
ple data; and a testing set, composed of the remaining
10%. Then, in the evaluation phase, the best obtained
values were chosen and then evaluated against the whole
MNIST dataset.

A. Bernoulli distribution

The Bernoulli distribution is a discrete (binary) prob-
ability distribution whose parameters are the probabil-
ity of 1 (success), p; and the probability of 0 (failure),
q=(1-p)

It was then assumed that each dimension of MNIST
followed this distribution, so data needed to be converted
from positive natural values in the range [0, 255] to binary
values. To accomplish that, a binarization threshold b =
0.5 was set, so that values > t % 255 were considered 1,
and 0 otherwise.

Then, the simple truncation (peq) smoothing technique
was applied:

€ Zf ﬁcd <€
Ped=1—€ if peg>1—c¢ 0<e<0.5
Ped otherwise

where p.q is the probability of the d-th dimension of
the c-th class weight vector. Finally, several experiments
were performed using different values for e.

The obtained values of the experimentation phase can
be found in Figure 6. We can observe that the best result
was obtained with ¢ = 1 % 1072°, which led to a training
accuracy of 83.47%.

In the testing phase, an accuracy of 84.38% was
achieved.
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FIG. 6. Bernoulli training results with different e values

B. Multinomial distribution

The Multinomial distribution is a generalization of the
binomial distribution that gives the probability of any
particular combination of numbers of successes for vari-
ous categories. For example, it models the probability of
counts for each side of a k-sided die rolled n times. For
n independent trials each of which leads to a success for
exactly one of k categories, with each category having a
given fixed success probability, this distribution gives the
probability of any particular combination of numbers of
successes for the various categories.

It was then assumed that each sample digit of MNIST
followed this distribution. In this case, the distribution
already works with positive integer values, so data did
not need to be preprocessed.

Then, the Laplace (p.q) smoothing technique was ap-
plied:

Ped + €

ﬁcd = = — e>0
> a(Dea + €)



where p.q is defined as in the Bernoulli distribution
(VIA). Finally, several experiments were performed us-
ing different values for e.
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FIG. 7. Multinomial training results with different e values

The obtained values of the experimentation phase can
be found in Figure 7. We can observe that the best result
was obtained with 1% 10710 < e < 1% 1078, which led to
a training accuracy of 82.15%.

In the testing phase, an accuracy of 83.67% was
achieved. This results are very similar to the ones ob-
tained previously with the Bernoulli distribution (about
1% difference), but in this case the parameters are more
complex (positive integers vs. binary values), so for now
the best option would be to choose the previous distri-
bution.

C. Gaussian distribution

The Gaussian distribution (a.k.a normal distribution)
is a bell-shaped curve, and it is assumed that during
any measurement values will follow a normal distribu-
tion with an equal number of measurements above and
below the mean value.

For this last experiment, it was also assumed that each
sample digit of MNIST followed this distribution. In this
case, preprocessing was not needed as the distribution
also works already with positive real values.

Then, the flat smoothing (X.) technique was applied:

Se=axS.+ (1—a)x1

where 3, is the covariance matrix for each class ¢, and
I is the identity matrix. Finally, several experiments were
performed using different values for a.

The obtained values of the experimentation phase can
be found in Figure 8. We can observe that the best result
was obtained with o = 1% 10™%, which led to a training
accuracy of 95.73%.

In the testing phase, an accuracy of 95.82% was
achieved. This results are the best out of the three tested
distributions, with an improvement of over 10%, which
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FIG. 8. Gaussian training results with different « values

TABLE IV. Summary of results (best accuracies)

Approach Training |Testing
Convolutional Neural Network 98.845 99.310
Zero-shot learning® 72.423 48.061
k-Nearest Neighbors 97.600 97.160
Bernoulli distribution 83.470 84.380
Multinomial distribution 82.150 83.670
Gaussian distribution 95.730 95.820

2 For ZSL, the inference phase was
considered as the testing phase.

seems reasonable considering the amount of parameters
that the distribution has.

VII. FINAL CONCLUSIONS

After running all the experiments and gathering rel-
evant data, a summary of the best obtained values of
accuracy in both the training and testing phases of all
experiments is observed in Table IV.

As it can be seen, the Convolutional Neural Network is
the best performing one, followed closely by the k-Nearest
Neighbors approach. Considering the difficulty of training
both approaches, and due to the small difference in both
results, the most appropriate choice in this case
would be to go for the k-NN model.

Moreover, when analyzing the results for the probabil-
ity distributions, we can find promising results for the
Gaussian case, with an accuracy that is close to that of
the two best approaches. However, for the considered
dataset the samples do not fit as well into the Bernoulli
and Multinomial distributions, although the results are
in acceptable ranges.

Finally, the Zero-shot learning approach obtained the
worst results. However, that model is, in fact, charac-
terized for having the least amount of information input



of all the considered approaches. It was concluded that
altough in MNIST the amount of classes is very well-

defined, the model obtained acceptable results that would
be remarkable for an expandable class dataset with more
dynamic information.

[1] Y. LeCun, C. Cortes, and C. Burges, Mnist hand-
written digit database, ATT Labs [Ounline]. Available:
http://yann.lecun.com/exdb/mnist 2 (2010).

[2] T. Fushiki, Estimation of prediction error by using k-
fold cross-validation, Statistics and Computing 21, 137
(2011).

[3] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Mar-
shall, Activation functions: Comparison of trends in
practice and research for deep learning, arXiv preprint
arXiv:1811.03378 (2018).

[4] G. Lin and W. Shen, Research on convolutional neu-
ral network based on improved relu piecewise activation
function, Procedia computer science 131, 977 (2018).

[5] S. K. Kumar, On weight initialization in deep neural net-
works, CoRR abs/1704.08863 (2017), 1704.08863.

[6] J. Bjorck, C. Gomes, B. Selman, and K. Q. Weinberger,

Understanding batch normalization,

arXiv:1806.02375 (2018).

Y. Xian, C. H. Lampert, B. Schiele, and Z. Akata, Zero-

shot learning - A comprehensive evaluation of the good,

the bad and the ugly, CoRR abs/1707.00600 (2017),

1707.00600.

N. S. Altman, An introduction to kernel and nearest-

neighbor nonparametric regression, The American Statis-

tician 46, 175 (1992).

[9] P. C. Mahalanobis, On the generalized distance in statis-

tics (National Institute of Science of India, 1936).

[10] D. L. Wilson, Asymptotic properties of nearest neighbor
rules using edited data, IEEE Transactions on Systems,
Man, and Cybernetics SMC-2, 408 (1972).

arXiv preprint

=

8


http://arxiv.org/abs/1704.08863
https://arxiv.org/abs/1704.08863
http://arxiv.org/abs/1707.00600
https://arxiv.org/abs/1707.00600
https://doi.org/10.1109/TSMC.1972.4309137
https://doi.org/10.1109/TSMC.1972.4309137

	Evaluation of multiple approaches to recognize and classify handwritten digits
	Abstract
	Getting Started
	The dataset
	Convolutional Neural Networks
	Evaluation
	Initial model
	Model optimization
	Results

	Zero-shot learning
	Model description
	Training the model
	Results

	k-Nearest Neighbors
	Experiment description
	Results

	Probability distributions
	Bernoulli distribution
	Multinomial distribution
	Gaussian distribution

	Final conclusions
	References


